Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 431-436, 2008.
Article in Chinese | WPRIM | ID: wpr-316708

ABSTRACT

The use of stem cells will lead to novel treatments for a wide range of diseases due to their properties of self-renewing, pluripotent, and undifferentiated state, and the stem cells are usually genetically modified for cell and gene therapy. If the baculovirus, as a new gene vector, can be effectively transduced into various mammalian bone marrow-derived mesenchymal stem cells (BMSCs) in vitro, it will be a better gene vector to genetically modify the stem cells. The aim of the present study is to investigate the transduction efficiency of recombinant baculovirus (BacV-CMV-EGFP), which expressed a reporter gene encoding enhanced green fluorescent protein (EGFP) under a cytomegalovirus immediate early (CMV-IE) promoter, into various mammalian BMSCs. The BMSCs of mouse, rat, porcine, rhesus, and human were cultured primarily in vitro. After more than three passages, the mammalian BMSCs were seeded into dishes and cultured in a humidified incubator at 37 °C with 5% CO(2). When the cells reached about 80% confluence, the complete medium was removed by aspiration. The cells were transduced with recombinant baculovirus at a multiplicity of infection (MOI) of 200 vector genomes/cell with 500 μL PBS at 25 °C for 4 h. At the end of baculovirus transduction, cells were washed and incubated with 2 mL complete medium, and baculovirus-transduced mammalian BMSCs were cultured in a humidified incubator for 2 d. Then, the inverted fluorescent microscope was used to observe GFP expressions in different mammalian BMSCs, and flow cytometry was used to detect the transduction efficiency of baculovirus in various mammalian BMSCs. After more than three passages, the BMSCs of mouse, rat, porcine, rhesus, and human showed a homogeneous spindle-shaped morphology. Compared with the BMSCs of mouse, rat and porcine, the inverted fluorescent microscope observations showed that there were more BMSCs expressing GFP and greater mean fluorescence intensity in rhesus and human transduced with baculovirus. The baculovirus could efficiently transduce into the BMSCs of mouse, rat, porcine, rhesus and human, and the transduction efficiency was (20.21±3.02)%, (22.51±4.48)%, (39.13±5.79)%, (71.16±5.36)% and (70.67±3.74)%, respectively. In conclusion, baculovirus displays different transduction efficiency into various mammalian BMSCs. Due to the high transduction efficiency for primate and human BMSCs, baculovirus is possibly a more suitable gene vector to genetically modify BMSCs of human and primates.


Subject(s)
Animals , Humans , Mice , Rats , Baculoviridae , Bone Marrow Cells , Cell Biology , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins , Genetics , Macaca mulatta , Mesenchymal Stem Cells , Cell Biology , Promoter Regions, Genetic , Swine , Transduction, Genetic
2.
Acta Academiae Medicinae Sinicae ; (6): 498-505, 2008.
Article in Chinese | WPRIM | ID: wpr-270662

ABSTRACT

<p><b>OBJECTIVE</b>To construct the recombinant adenovirus containing herpes simplex virus-1 virion protein (VP) 22 and human microdystrophin gene, then the adenovirus was transfected into C2C12 myoblast and studied on the property of protein transduction with VP22-mediated microdystrophin in C2C12 myoblast.</p><p><b>METHODS</b>The full-length VP22 cDNA was obtained from recombinant plasmid pSINrep5-VP22 with PCR, and the product was directionally inserted into pShuttle-CMV to acquire the plasmid pCMV-VP22. Microdystrophin cDNA was obtained from recombinant plasmid pBSK-micro digested with restrictive endonuclease NotI, and the product was directionally inserted into pCMV-VP22 to acquire the plasmid pCMV-VP22-MICDYS. The plasmid of pCMV-VP22-MICDYS was lined with Pme I, and the fragment containing VP22-microdystrophin was reclaimed and transfected into E1 coli BJ5183 with plasmid pAdeasy-1. After having been screened by selected media, the extracted plasmid of positive bacteria was transfected into HEK293 cells with liposome and was identified by observing the cytopathic effect of cells and by PCR method to acquire the recombinant adenovirus Ad-VP22-MICDYS. Finally, the C2C12 myoblast were transfected with the recombinant adenovirus Ad-VP22-MICDYS and Ad-MICDYS, and the expression of microdystrophin was detected by RT-PCR, Western blot and immunocytochemistry.</p><p><b>RESULTS</b>The recombinant adenovirus including VP22 and microdystrophin gene was successfully constructed. VP22 transferred VP22-microdystrophin fused protein from infected C2C12 myoblast into uninfected cells and enhance the expression of microdystrophin in myoblast.</p><p><b>CONCLUSIONS</b>Recombinant adenovirus containing VP22 and microdystrophin gene was constructed successfully. VP22 can enhance the expression with microdystrophin in myoblast. It lays the foundation for further studying on VP22-mediated recombinant including microdystrophin gene to cure Duchenne muscular dystrophy.</p>


Subject(s)
Animals , Humans , Mice , Adenoviridae , Genetics , Physiology , Cell Line , Dystrophin , Genetics , Metabolism , Genetic Vectors , Genetics , Metabolism , Myoblasts , Metabolism , Virology , Simplexvirus , Genetics , Metabolism , Transduction, Genetic , Viral Structural Proteins , Genetics , Metabolism , Virion , Genetics , Metabolism
3.
Acta Academiae Medicinae Sinicae ; (6): 569-573, 2008.
Article in Chinese | WPRIM | ID: wpr-270647

ABSTRACT

<p><b>OBJECTIVE</b>To compare the transduction efficiencies of adenoviral vector, adeno-associated viral vector, baculoviral vector, and plasmid vector in human bone-marrow-derived mesenchymal stem cells (hBMSCs).</p><p><b>METHODS</b>The hBMSCs were cultured in vitro and transducted with the adenoviral vector, adeno-associated viral vector, baculoviral vector, and plasmid vector. The expression of target protein was observed by inverted fluorescent microscopy and flow cytometry.</p><p><b>RESULTS</b>Inverted fluorescent microscopy showed that some of the hBMSCs after transduction expressed the green fluorescent protein (GFP) and the hBMSCs transducted with baculoviral vector expressed more GFP than those of other three vectors. Flow cytometry showed that the transduction efficiencies and mean fluorescence intensities of the adenoviral vector, adeno-associated viral vector, and plasmid vector were 42%, 37%, and 22% and 158, 115, and 77, respectively, which were significantly lower than those of baculoviral vector (70%, P < 0.01; 212, P < 0.05; respectively).</p><p><b>CONCLUSION</b>Compared with the adenoviral vector, adeno-associated viral vector, and plasmid vector, the baculoviral vector has higher transduction efficiency in hBMSCs and therefore may be a more suitable gene vector for research in human gene therapy.</p>


Subject(s)
Humans , Adenoviridae , Genetics , Metabolism , Baculoviridae , Genetics , Metabolism , Bone Marrow Cells , Metabolism , Virology , Cells, Cultured , Dependovirus , Genetics , Metabolism , Gene Expression , Genetic Vectors , Genetics , Metabolism , Green Fluorescent Proteins , Genetics , Metabolism , Hematopoietic Stem Cells , Metabolism , Virology , Plasmids , Genetics , Metabolism , Transduction, Genetic , Methods
SELECTION OF CITATIONS
SEARCH DETAIL